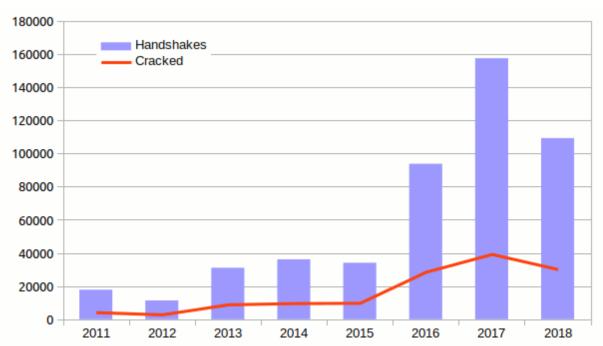


Alex Stanev alex@stanev.org @RealEnderSec

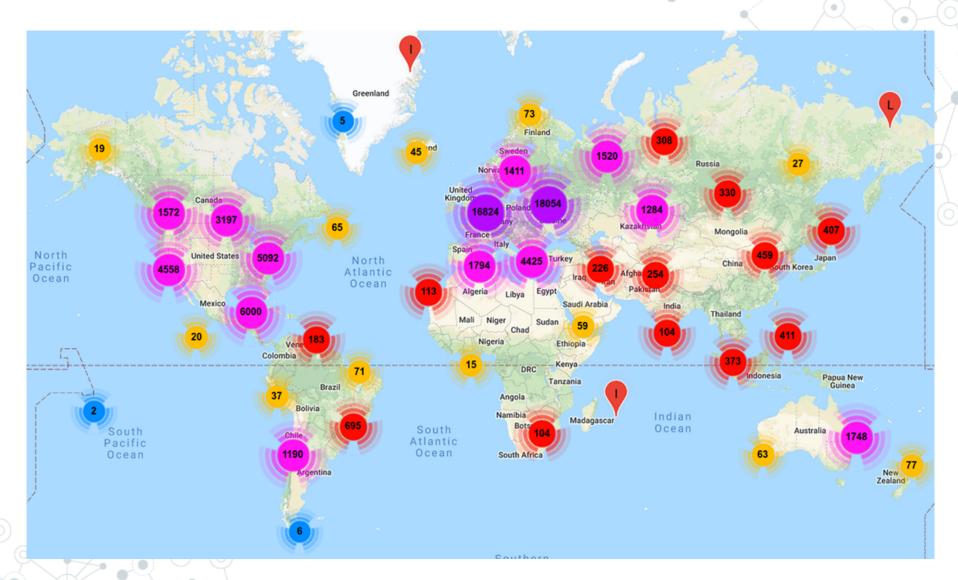
https://wpa-sec.stanev.org https://github.com/RealEnder/dwpa

What is wpa-sec?

- We collect and process wireless network captures submitted by wpa-sec users
- Identify WPA/WPA2 handshakes
- Maintain set of dictionaries to check against handshakes
- Contributors use help_crack python script to download handshakes and dicts and initiate attacks
- The results are submitted back to wpa-sec DB
- Cracked dictionary available for free download, updated in realtime



wpa-sec software infrastructure


- hcxtools for handshake identification https://github.com/ZerBea/hcxtools
- RouterKeygenPC for known PSK algorithm generation https://github.com/routerkeygen/routerkeygenPC
- Hashcat & John the Ripper (bleeding) as crackers <u>https://github.com/hashcat/hashcat</u> <u>https://github.com/magnumripper/JohnTheRipper</u>
- Wigle for wireless network mapping https://wigle.net

wpa-sec stats

- 0.5M+ handshakes submitted
- 140GB+ of raw capture data
- 27%+ cracked
- <5% hit by known algorithm</p>
- Only <7% of dictionary keyspace progress</p>

AP geo distribution

Get the handshake

Oldschool AP attack – deauthenticate active clients
 Pros: identify exact AP bssid

Cons: may need AP nonce correction due to retransmissions, may result in uncrackable handshakes

 AP-less attack – attack directly the client, pretending to be a known AP

Pros: no need for AP nonce correction, no uncrackable handshakes, can continue with higher level attacks (hello WPA-Enterprise)

Cons: we can't extract AP bssid if the client transmits unidirected proberequest, only essid, so limited known PSK algorithm support

- Tool of choice: hcxdumptool uses raw sockets https://github.com/ZerBea/hcxdumptool
- Warning: do not postprocess/clean the captures!

The crack – good old handshake

```
PMK = PBKDF2-SHA1 (PSK, ESSID, 4096)

PKE = "Pairwise key expansion" + mac_ap + mac_sta + anonce + snonce

WPA

PTK = HMAC-SHA1 (PKE, PMK)

TESTMIC = HMAC-MD5 (EAPOL, PTK)

WPA2

PTK = HMAC-SHA1 (PKE, PMK)

TESTMIC = HMAC-SHA1 (EAPOL, PTK)

WPA2-CMAC

WPA2-CMAC

FTK = HMAC-SHA256 (PKE, PMK)

TESTMIC = OMAC1-AES-128 (EAPOL, PTK)

PTK = HMAC-SHA256 (PKE, PMK)
```

Messages	EAPOL from	AP	STA	Note
M1M2	M2	M1	M2	Unauthorized handshake – typos, other nets
M1M4	M4	M1	M4	
M2M3	M2	МЗ	M2	Unauthorized handshake – typos, other nets
M2M3	M3	М3	M2	
M3M4	M3	МЗ	M4	
M3M4	M4	МЗ	M4	

What is AP nonce correction?

- Due to retransmissions in crowded areas, weak signal, aggressive deauth attacks...
- APs increment the anonce value during handshake
- In perfect world we can use Replay-counter field, but it often stays the same
- The result is uncrackable handshake packets look good, but came from different phases of auth sequence
- The penalty nc=32 is ~3%:
 + or the correction value
 Big endian/Little endian devices
- In hcxtools we detect and deal with such situations

NC needed	5%
-NC	30%
+NC	70%
BE	90%
LE	10%

Anonce:

7b2076cfb5c0...18eb6556d17886f38**e8bd2172**

The crack - welcome PMKID

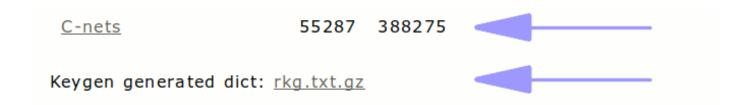
- Attack against 802.11i/p/q/r networks with roaming functions enabled
- Also works in AP-less mode
- PMK is stored in sta and ap, along with mac_sta, mac_ap,
 PMK lifetime and has unique identifier PMKID = PMK
 Security Association (PMKSA)
- PMK is computed like this:
 PMKID=HMAC-SHA1-128 (PMK, "PMK Name"+mac_ap+mac_sta)
- We can get those from only 2 frames:
 AssociationRequest/ReassociationRequest/ProbeResponse
 EAPOL 1/4 (M1) with included RSN IE
- Capture with hcxdumptool
- Hashcat modes 16800/16801 (since 4.2.0)

Capture hardware

- We must be fast, so we can respond within EAPOL-Key Timeout
- In crowded areas and octo-core devices this can be challenging

Captures submission

- First, issue your own wpa-sec key On server side:
- Process capture through hcxpcaptool
- Hash the handshakes and look for duplicates in the DB
- For every new handshake look for already cracked handshakes with the same essid/bssid/mac_sta
- O If found, try to crack new ones with PMK
 PMK = PBKDF2-SHA1 (PSK, ESSID, 4096)
- Try RouterKeygenPC and some custom rules
- Query Wigle for AP geolocation
- Release the handshake for crackers


Cracker get_work

- Contributors run help_crack
- It downloads handshakes and dictionaries and feeds the cracker
- Start from dicts with fewer words
- Start from oldest handshakes
- ESSID combine: group all handshakes with same ESSIDs for current dict selection
- Auto dict count: download more dicts based on client performance – avoids GPU kernel initialization overhead for small dicts

	· (a)	
Dictionary	Word count	Hits
<u>hashes.org</u>	189189560	1
Offensive Security	34036913	3
<u>Used</u>	9062908	2818
<u>InsidePro</u>	7788990	21864
<u>Wikipedia en</u>	5925979	24015
<u>Wikipedia de</u>	5429072	24309
<u>Wikipedia ru</u>	2574086	24604
Old gold	1560177	33263
<u>Wikipedia es</u>	1528843	34941
wp chit bg	1318313	35702
<u>Wikipedia fr</u>	1294686	61612
<u>OpenWall</u>	1148496	331615
WPSkey9	1000000	50286
WPSkey8	1000000	64820
WPSkey7	1000000	65563
WPSkey6	1000000	73498
WPSkey5	1000000	82636
WPSkey4	1000000	173031
WPSkey3	1000000	360175
WPSkey2	1000000	363072
WPSkey1	1000000	368968
WPSkey0	1000000	372816
CoW	930799	383353
Slang	510315	385230
Pinyin chinese	61479	386299
<u>C-nets</u>	55280	388270

PSK submissions

- Accept one or more PSK by hash or BSSID
- Validated by custom PHP cracker on the backend
- On success, try to find other uncracked handshakes with the same essid/bssid/mac_sta and attack by PMK
- Regenerate cracked.txt.gz dict
- Cracked by RouterKeygenPC are separated in rkg.txt.gz

What we've learned

- A multitude of BSSID/ESSID based default algos
- Identified keyspace for some default router PSKs
- Confirmed results from reverse engineering efforts to extract default algos
- O Hit some linux wifi adapter driver bugs https://bugzilla.kernel.org/show_bug.cgi?id=196715 https://github.com/kaloz/mwlwifi/issues/107
- Identified some optimizations and possible improvements in hashcat and JtR
- wpa-sec is useful as OSINT source for penetration tests

So what's next

- A lot more default algos are hidden in the DB
- Build online DB for default algos and keyspaces
- Refresh web interface from `90s style
- Introduce API for DB query
 For now, if you have ideas, just drop me a mail
- Prepare for WPA3 (speculations)
 Simultaneous Authentication of Equals (SAE) / Dragonfly
 Negotiates fresh PMK forward secrecy
 Then good old 4-way handshake
 WPS -> Wi-Fi Device Provisioning Protocol (DPP)
 Mandatory Protected Management Frames (PMF) no simple deauth
 More @ Mathy Vanhoef's blog:

https://www.mathyvanhoef.com/2018/03/wpa3-technical-details.html

But...in 2018 we still phase out WEP (7%) and WPA (6%)

Thanks!

Any questions?

https://wpa-sec.stanev.org https://github.com/RealEnder/dwpa

Alex Stanev alex@stanev.org @RealEnderSec

Greetings to

ZeroBeat, atom, magnumripper, Rui Araujo, Bobzilla, Diego and all wpa-sec contrbutors and users This page intentionally left blank.